Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

K. Anitha, S. Athimoolam and R. K. Rajaram*

Department of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail:
rkrsopmku@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.051$
$w R$ factor $=0.149$
Data-to-parameter ratio $=7.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

t-Leucine s-leucinium picrate

The asymmetric unit of the title compound, $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$, contains two unprotonated leucine residues, two protonated leucinium cations and two picrate anions. The leucine residues show a class II hydrogen-bonding scheme and the leucinium residues show a class I hydrogen-bonding scheme. The leucine and leucinium residues form infinite hydrogen-bonded chains running along the a axis.

Comment

Leucine is one of the naturally occurring α-amino acids. The crystal structures of L-leucine (Harding \& Howieson, 1976; Coll et al., 1986; Görbitz \& Dalhus, 1996), Dl-leucine (Di Blasio et al., 1975), D-leucine (Moller, 1949) and di-L-leucine hydrochloride (Golič \& Hamilton, 1972) have been determined. The crystal structures of amino acids and their complexes have provided interesting information about aggregation, and the effect of other molecules on their interaction and molecular properties (Vijayan, 1988; Prasad \& Vijayan 1993). In the present work, L-leucine l-leucinium picrate, (I), is reported.

Received 25 April 2005
Accepted 3 May 2005
Online 7 May 2005

(I)

The difference between the $\mathrm{C}-\mathrm{O}$ bond lengths of the carboxyl group clearly indicates the protonation of two of the four leucine residues in the asymmetric unit. The single bond distances of carboxyl O atoms in leucinium cations [1.275 (6) and 1.286 (6) \AA] are somewhat shorter than the mean value of $1.303 \AA$ (Nardelli et al., 1962). The most striking feature of this structure is the existence of a hydrogen-bonded assembly of a leucine molecule and a leucinium cation. All the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded assemblies are in an open configuration.

The geometries of all the leucine residues are similar. The backbone conformation angle ψ^{1} is in the cis form and ψ^{2} is in the trans form. The side-branched chain conformation angles χ^{1} and χ^{21} are in gauche II forms, and χ^{22} is in the trans form.

The picrate anions play a vital role in hydrogen bonding with all the leucine residues. These two picrate anions in the asymmetric unit have the same geometric parameters and are similar to other picric acid complexes. Of the three nitro groups, two are twisted from the plane of the ring in one of the picrate anions and one nitro group is twisted in the other

(a)

(b)

Figure 1
The two halves of the asymmetric unit of the title compound, with the atom-numbering scheme and 50% probability displacement ellipsoids.
picrate anion (Table 1). This twisting is not correlated with the $\mathrm{C}-\mathrm{N}$ bond distances (Soriano-Garcia et al., 1978).

The structure is stabilized by an extensive network of $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The structures of many amino acids with non-polar side chains have the arrangement of a double layer of carboxyl and amino groups held together by hydrogen bonds (Torii \& Iitaka 1970, 1971, 1973; Harding \& Long, 1968). In both leucine residues, two two-centered and one three-centered $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds lead to a class II hydrogen-bonding scheme. In both leucinium residues, three two-centered hydrogen bonds are observed, leading to a class I hydrogen-bonding scheme (Jeffrey \& Saenger, 1991). It is interesting to note that only unprotonated leucine residues have three-centered hydrogen bonds. The carboxyl groups of leucine and the leucinium residues are interconnected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming assemblies of one cation with one neutral molecule. The shortening of the $\mathrm{C}-\mathrm{O}$ bond distance is consistent with the fact that the charge transfer of the H atom is slightly low and the hydrogen bonding is strong, as observed in bis(L-tyrosinium) sulfate monohydrate (Sridhar et al., 2002).

The carboxyl H atoms (H41D and H51D) are in a syn-syn orientation with respect to the donor and acceptor O atom of the carboxyl group $\left[\mathrm{H} 41 D-\mathrm{O} 41 B-\mathrm{C} 41-\mathrm{O} 41 A=7.8^{\circ}\right.$,

Figure 2
A packing diagram, viewed down the a axis.
$\mathrm{H} 41 D-\mathrm{O} 21 B^{\mathrm{i}}-\mathrm{C} 21^{\mathrm{i}}-\mathrm{O} 21 A^{\mathrm{i}}=2.5^{\circ}, \mathrm{H} 51 D-\mathrm{O} 51 B-\mathrm{C} 51-$ $\mathrm{O} 51 A=-2.9^{\circ}$ and $\mathrm{H} 51 D-\mathrm{O} 31 B^{\mathrm{i}}-\mathrm{C} 31^{\mathrm{i}}-\mathrm{O} 31 A^{\mathrm{i}}=2.4^{\circ}$; symmetry code: (i) $1+x, y, z]$, as found in betaine betainium oxalate (Rodrigues et al., 2001).

There is no classical head-to-tail sequence observed in the structure. Both amino groups of the leucinium residues connect to carboxyl O atoms of symmetry-related leucine residues, thus forming infinite chains along the a axis. Both leucine residues connect two different picrate anions by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to infinite chains along the a axis. In the crystal structure, the hydrophobic layers across $y \simeq \frac{1}{3}$ are sandwiched between hydrophilic layers.

Experimental

The title compound was crystallized by slow evaporation at room temperature, after mixing L-leucine and picric acid in a 2:1 molar ratio in water.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$
$M_{r}=491.46$
Triclinic, $P 1$
$a=7.1470$ (5) \AA
$b=11.8540(8) \AA$
$c=15.456$ (1) \AA
$\alpha=106.45$ (2) $^{\circ}$
$\beta=95.17$ (1) ${ }^{\circ}$
$\gamma=91.02(2)^{\circ}$
$V=1249.5(2) \AA^{3}$
$Z=2$
$D_{x}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Nonius MACH3 four-circle diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.981, T_{\text {max }}=0.987$
5538 measured reflections
4392 independent reflections
3495 reflections with $I>2 \sigma(I)$
$D_{m}=1.297 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in a mixture of carbon tetracholride and xylene
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.4-13.9^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.25 \times 0.15 \times 0.12 \mathrm{~mm}$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-1 \rightarrow 8$
$k=-14 \rightarrow 14$
$l=-18 \rightarrow 18$
3 standard reflections frequency: 60 min intensity decay: 1%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0871 P)^{2}\right. \\
& \quad+0.3632 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.38 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}
\end{aligned}
$$

All H atoms were placed in geometrically calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.89 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA)$ and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ equal to $1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}$ of the carrier atom for C and N / O atoms, respectively. In addition to the 4392 unique reflections, 982 Friedel pairs were measured. However, owing to the absence of atoms with significant anomalous dispersion effects, these data were merged. The absolute configuration was assigned on the basis of the starting material.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

The authors thank the Department of Science and Technology, Government of India, for establishing a single-cystal X-ray diffractometer facility at the School of Physics, Madurai Kamaraj University, Madurai, through the FIST program.

References

Coll, M., Solars, X., Font-Altaba, M. \& Subirana, J. A. (1986). Acta Cryst. C42, 599-601.
Di Blasio, B., Pedone, C. \& Sirigu, A. (1975). Acta Cryst. B31, 601602.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Golič, L. \& Hamilton, W. C. (1972). Acta Cryst. B28, 1265-1271.
Görbitz, C. H. \& Dalhus, B. (1996). Acta Cryst. C52, 1754-1756.
Harding, M. M. \& Howieson, R. M. (1976). Acta Cryst. B32, 633634.

Harding, M. M. \& Long, H. A. (1968). Acta Cryst. B24, 1096-1102.
Harms, K. \& Wocadlo, S. (1995) XCAD4. University of Marburg, Germany.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin/Heidelberg/New York: Springer-Verlag.
Moller, C. K. (1949). Acta Chem. Scand. 3, 1326-1330.
Nardelli, M., Fava, G. \& Giraldi, G. (1962). Acta Cryst. 15, 737-746.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Prasad, G. S. \& Vijayan, M. (1993). Acta Cryst. B49, 348-356.
Rodrigues, V. H., Paixáo, J. A., Costa, M. M. R. R. \& Matos Beja, A. (2001). Acta Cryst. C57, 213-215.
Sheldrick, G. M. (1990). SHELXTL/PC. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Soriano-Garcia, M., Srikrishnan, T. \& Parthasarathy, R. (1978). Acta Cryst. A34, s114.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sridhar, B., Srinivasan, N. \& Rajaram, R. K. (2002). Acta Cryst. E58, o211o214.
Torii, K. \& Iitaka, Y. (1970). Acta Cryst. B26, 1317-1325.
Torii, K. \& Iitaka, Y. (1971). Acta Cryst. B27, 2237-2246.
Torii, K. \& Iitaka, Y. (1973). Acta Cryst. B29, 2799-2807.
Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.

